Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(9): 098401, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721834

RESUMO

Growing a flat lamina such as a leaf is almost impossible without some feedback to stabilize long wavelength modes that are easy to trigger since they are energetically cheap. Here we combine the physics of thin elastic plates with feedback control theory to explore how a leaf can remain flat while growing. We investigate both in-plane (metric) and out-of-plane (curvature) growth variation and account for both local and nonlocal feedback laws. We show that a linearized feedback theory that accounts for both spatially nonlocal and temporally delayed effects suffices to suppress long wavelength fluctuations effectively and explains recently observed statistical features of growth in tobacco leaves. Our work provides a framework for understanding the regulation of the shape of leaves and other leaflike laminar objects.

2.
Biol Lett ; 19(2): 20220538, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36789542

RESUMO

The persistence of imperfect mimicry in nature presents a challenge to mimicry theory. Some hypotheses for the existence of imperfect mimicry make differing predictions depending on how mimetic fidelity is measured. Here, we measure mimetic fidelity in a brood parasite-host system using both trait-based and response-based measures of mimetic fidelity. Cuckoo finches Anomalospiza imberbis lay imperfectly mimetic eggs that lack the fine scribbling characteristic of eggs of the tawny-flanked prinia Prinia subflava, a common host species. A trait-based discriminant analysis based on Minkowski functionals-that use geometric and topological morphometric methods related to egg pattern shape and coverage-reflects this consistent difference between host and parasite eggs. These methods could be applied to quantify other phenotypes including stripes and waved patterns. Furthermore, by painting scribbles onto cuckoo finch eggs and testing their rate of rejection compared to control eggs (i.e. a response-based approach to quantify mimetic fidelity), we show that prinias do not discriminate between eggs based on the absence of scribbles. Overall, our results support relaxed selection on cuckoo finches to mimic scribbles, since prinias do not respond differently to eggs with and without scribbles, despite the existence of this consistent trait difference.


Assuntos
Tentilhões , Parasitos , Pardais , Animais , Evolução Biológica , Comportamento de Nidação , Óvulo , Interações Hospedeiro-Parasita
3.
Proc Natl Acad Sci U S A ; 119(41): e2200728119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191183

RESUMO

Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which Escherichia coli adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of E. coli elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process.


Assuntos
Parede Celular , Escherichia coli , Bactérias , Ciclo Celular , Retroalimentação
4.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750258

RESUMO

Darwin's finches are a classic example of adaptive radiation, exemplified by their adaptive and functional beak morphologies. To quantify their form, we carry out a morphometric analysis of the three-dimensional beak shapes of all of Darwin's finches and find that they can be fit by a transverse parabolic shape with a curvature that increases linearly from the base toward the tip of the beak. The morphological variation of beak orientation, aspect ratios, and curvatures allows us to quantify beak function in terms of the elementary theory of machines, consistent with the dietary variations across finches. Finally, to explain the origin of the evolutionary morphometry and the developmental morphogenesis of the finch beak, we propose an experimentally motivated growth law at the cellular level that simplifies to a variant of curvature-driven flow at the tissue level and captures the range of observed beak shapes in terms of a simple morphospace. Altogether, our study illuminates how a minimal combination of geometry and dynamics allows for functional form to develop and evolve.


Assuntos
Bico/anatomia & histologia , Tentilhões/anatomia & histologia , Animais , Evolução Biológica , Morfogênese/fisiologia
5.
Soft Matter ; 17(42): 9745-9754, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34647567

RESUMO

When a thin stream of aqueous sodium alginate is extruded into a reacting calcium chloride bath, it polymerizes into a soft elastic tube that spontaneously forms helical coils due to the ambient fluid drag. We quantify the onset of this drag-induced instability and its nonlinear evolution using experiments, and explain the results using a combination of scaling, theory and simulations. By co-extruding a second (internal) liquid within the aqueous sodium alginate jet and varying the diameter of the jet and the rates of the co-extrusion of the two liquids, we show that we can tune the local composition of the composite filament and the nature of the ensuing instabilities to create soft filaments of variable relative buoyancy, shape and mechanical properties. Altogether, by harnessing the fundamental varicose (jetting) and sinuous (buckling) instabilities associated with the extrusion of a submerged jelling filament, we show that it is possible to print complex three-dimensional filamentous structures in an ambient fluid.

6.
Soft Matter ; 14(41): 8361-8371, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30306186

RESUMO

Heterogeneous growth plays an important role in the shape and pattern formation of thin elastic structures ranging from the petals of blooming lilies to the cell walls of growing bacteria. Here we address the stability and regulation of such growth, which we modeled as a quasi-static time evolution of a metric, with fast elastic relaxation of the shape. We consider regulation via coupling of the growth law, defined by the time derivative of the target metric, to purely local properties of the shape, such as the local curvature and stress. For cylindrical shells, motivated by rod-like E. coli, we show that coupling to curvature alone is generically linearly unstable to small wavelength fluctuations and that additionally coupling to stress can stabilize these modes. Interestingly, within this framework, the longest wavelength fluctuations can only be stabilized with the mean curvature flow. Our approach can readily be extended to gain insights into the general classes of stable growth laws for different target geometries.

7.
Phys Rev E ; 96(1-1): 013003, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347169

RESUMO

Thin shells are characterized by a high cost of stretching compared to bending. As a result isometries of the midsurface of a shell play a crucial role in their mechanics. In turn, curves on the midsurface with zero normal curvature play a critical role in determining the number and behavior of isometries. In this paper, we show how the presence of these curves results in a decrease in the number of linear isometries. Paradoxically, shells are also known to continuously fold more easily across these rigidifying curves than other curves on the surface. We show how including nonlinearities in the strain can explain these phenomena and demonstrate folding isometries with explicit solutions to the nonlinear isometry equations. In addition to explicit solutions, exact geometric arguments are given to validate and guide our analysis in a coordinate-free way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...